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Abstract

We have carried out computer simulations of the statics
and dynamics of an isolated model polymer chain with excluded

volume in a solvent acting as a heat bath. We find that the
distritution function for the separation of a pair of beads scales
as the number of beads N t@lthe power v and that edge effects are.
small. The dynamical correlation functions, such as that of the

2v+1

end=to~-end vector, scale as N with v = 0,6. The results of a

dynamical lattice polymer model are shown to be consistent with the

present results if one adjusts the time scales in such a way
that the center of mass diffuses at the same rate in the two
models. The relaxation of the.stress tensor, is shown to be
quite similar to that of the Rouse modelf Finally, it is shown
tha£ edge effects are much more pronounced in the diffusive
motion of the inﬁividual beads, there being a skin comprising

about 30% of the total polymer,where bead motion is relatively

gquicker,



1. Introduction

When a solution of macromolecules is sufficiently dilute
the interactions between polymer chains can be neglectedelfz
A good model for this system then consists of one chain in a
sea of solvent. We describe here some equilibrium and kinetic
préperti@s obtained by numerically simulating the dynamical
evolution of such chains. A preliminary account of this work
appeared earlierQB

&Computer calculations, and in particular Monte Carlo methods,
have been used previously to find the equilibrium properties of
a gingle chain, especially for lattice models. Our results are
in agreement with other calculations in showing that when there
are excluded volume interactions between elements of the chain,
then the size of the chain gro%s as Nv, where N 1s the number
of beads and V~0.6. This agrees in turn with theories proposed

1.2 that the exponent should be universaléy

by Flory and others
independent of the details of the excluded volume interaction
and are the same for lattice and continuum systems.

On the other hand,dynamical calculation of lattice models
have not shown the same kind of agreement wiih theoretical
predictionse5 The models used have subsequently been criticised6
on the grounds that a lattice cannot faithfully represent the

dynamics of a real polymer in which small bending and stretching

motions may be important.



We therefore decided to carry out direct simulations of
the dynamics of such a model chain with excluded volume in a
heat bath representing a solvent. For the sake of simplicity
and tractability we have neglected in this study the hydrodynamic
interactions between different parts of the polymer. This
interaction does not have any effect on the eguilibrium
properties of the chain and its effect on the kineticé, while
very important, is separable, in principle, from the effects of
the excluded volume we shall study hereg7F879
Since the appeérance of our earlier report3 additional
computer studies of continuous volymer chains, dealing primarily

10,11

with equilibrium properties have appeared. There has also

12 of the kinetics of

been a new study by ﬁranbuehl and Verdier
chains with excluded volume on a lattice in which additional
degrees of mobility were permitted. This brought their
relaxation times for N < 50, into agreement with our values but
still left the relaxation times for larger chains slower than
ours. It is our belief that this is again due to the limited
repetoire of steps available on the lattice. We shall show,

that when time is consistently defined in the two models, their

results agree with ours, even for large chains.



2. Description of Model

For our present investigation we have chosen the ‘bead-
spring' model to represent the polymer chain. The chain contains
N beads with coordinates R x{ri : 1<i< N}. Successive beads
are connected by harmonic springs. A repulsive, short range,
excluded volume interaction ©@(r) acts between ail pairs of beads,

The total potential energy of the chain is:

U(R) = ) Lo, -~ 0%+ ) @(Igiagfi) (2.1)
i i<ij J

- A repulsive Lennard-Jones 6-12 potential was chosen to represent
the excluded volume interaction:

4e [(o’/r)12 - (c/r)6 % 1/41 «r i r
d(r) = ’

(2.2)

1/6 . . . . x
‘where r, = 2 / 0. This potential 1s continuous and has a contilinuous

first derivative, but is stiff enough for small r that the effective
excluded volume depends only weakly on & . On the other hand

1s l3.ioee to

e =0o0or o=20 corresponds to the Rouse model,
an ideal chain.

The energy U(R) in (2.1) is to be thought of as modeling
the effective, purely repulsive,interactions between polymer
segments in a good solventsl’z
The equilibrium distribution of a chain in such a solvent is
an exp[-BU(R) ], with B a parameter playing thé role of a re-

ciprocal temperature. The essential feature of universality is



that many properties of the cﬁain are, for large N, independent
of the details of U(R);

We have chosen our units of length to be ¢ and let Bk =
and Be = 0.1. With these parameters the average bead separation
in equilibrium is 1.45. While it is possible for two sections of
the chain to cross,such events are very unlikely and presumably
do not affect the results significantly.

Following the work of Kirkwood and Rouse7’13 we assume that
the velocity of the polymer is proportional to the forces acting
on it at any time; this is the high viscosity limit in which
inertial terms are neglected. Neglecting also hydrodynamic forces

th

we then have for the velocity of the j = bead at time t,

. = « D V,U W, . 2.3
‘yj (t) Y5 (R) + jj (t) ( )

Here B is the reciprocal temperature of the solvent, D is the
diffusion constant of a monomer, W is a Gaussian fluctuating
"Langevin force" (due to the solvent) with mean <Wj(t)> = 0,

yé.. . Eg. (2.3)

1 > == -
and covariance <<Wi(tl) Wj(tz) 6D5(t1 t:z i5

' . 1 :
leads to the Smoluchowski equation 4 for the time evolution of the
polymer probability density £(R,t),
of

= V. [ V.f B v, ' .
—5¢ (R/t) Djzl Ty LR + BE®R )T U (2.4)



The solution of (2.4) approaches equilibrium as t -+ oo}

£(R,£)>2 Y[exp -BU(R)] , (2.5)

3. Computational Method

The stochastic process described by (2.3) (or equivalently
the solution of the diffusion equation (2.4)) was simulated by a
novel Monte Carlo scheme.

A simple simulation method would be to displace every
particle at each time step by an amount proportional to the sum

of the internal force and the random force. That is:
r, (E+T) = r(t) - 8D Yiva% X3 (3.1)

where <xi Xj> = 6DT . This method is not useful in the presence

of strong excluded volume forces since if an overlap occurs

(?fimfjl is small for some pair ij) the internal force on particles
i and 1§ in the next time step will be very large and they could
be thréwn far from the polymer. The time step 7T would have to be
exceedingly small to alleﬁiate this problem. A systematic way is
needed of rejecting those moves where the potential energy increases
significantly.

To achieve this goal, let us first define the Green's
function for the process: G(RQyR,t) is the probability density for
the polymer to diffuse from the point RO to the point R (RO and R
are vectors in the 3N dimensional configuration space) in time t.

In other words G 1is the solution of eqg. (2.4) with boundary



conditions;
G(ROFR?O) = SCRQ®E11 (3.2)

Knowledge of the Green's functions for time <t is sufficient

to simulate the diffusion process in steps of T since:
f(R, b+ 1) = j dr_ £(R_,t) G(R,R,T) (3.3)

An approximation, exact if vu is constant, is

~3N/2 C(R-R_+ T DV UR)’
GO(RO,R,T) = (27 1D) exp| = (3.4)

4 DT

Variation of VU in (3.4) may lead to unphysical overlaps which
can be -avoided if Go is altered to satisfy the detailed balance

condition cbeyed by the exact Green's function,

exp [-BU(Ry)] G(Ry, R,t] = expl-BU(R)] G(R,Ry,t) (3.5)
In our simulation algorithm, we use the standard Metr@poliSIS
rejection technigue, more familiar with equilibrium simulations
but equally applicable here, to enforce (3.5). Our simulation
reads: |
1) start from a configuration R = (f ieaeggN)s Permute the
integers randomly. This permutation is kept fixed until all
particles have been moved once.
2) Sample a new postion fi for particle i from equation

(3.1) where only X; is nonzero.

3} Accept this move with probability gq(R,R') where:



e“gﬁggélﬁefRigale
(3.6)

g(R,R") = minélg T .
L e BU(R)GO(RgR”,T)

This acceptance probability is constructed so that the
txénsiti@nvprébability density, q(R,R*)GO(R,R?,T} satisfies
the detailed balance condition. - This assures that £(R,t)
obtained from the simulation satisfies (2.5).

4} If the move is accepted, the coordinates of that particle, Iiv
are replaced by their new values, viz,fgs If not the old
values are retained.

5) Steps 1] through 4) are performed for each particle in the
succession given by the random permﬁtationg Time is advanced
by an amount 1 after each particle has had a trial move.

Because time advances whether or not the pa;ticle move 1is

accepted, all diffusion processeé will be slowed down by an amount

proportional to the rejection ratio. In our simulations the time
step 1 is kept small enough so that the rejection ratio is about

10%. With this time step it is reasonable to assume that all slow

diffusive motions will be slowed down by the same factor. We can

determine this scale factor since the diffusion of the center of mass

can be calculated exactly from the Smoluchowski equation. It is

given by
de G(RO,Rgt)[g(R)mz(Ro)jz = 6Dt/N (3.7)
1 N
where % = & } r. is the center of mass. ¥or 1 = 0.0l the



rejection ratio varied from 8.5% at N = 5 to 11.2% at N = 63,
The:slawing down of the center.af mass varied from 6% at N = §

to 7% at N = 63. All times reported below and shown in the figures
have been scaled by'this amount (0.943.

The computations of the force and potential are done efficiently
with the use of near neighbor tables. At the start of the calculation
a list of all the pairs ij with |x | < r, + 20 is constructed. A is
constant which may be chosen to minimize the computer time required.
Only distances for pairs in this list need be computed. The list
is renewed when max[gi(t‘) - {i(t)]z > A . Because the excluded
volume potential keeps the polymer stretched out and because diffusion
times are slow this neighbor scheme is very efficient for large
polymers. However, as we shall see, all the diffusion times scale
as NZEZ and since the computation effort per move increases as N,
the computer time needed to simulate a fixed number of relaxation
times is proportional to N3°29 This limits the size of polymers
which can be simulated by this scheme on present computers to
approximately 100.

It is possible_té generalize the above method to include a
hydrodynamical interaction matrix (the Oseen tensor). Then the
random forces in eQuaﬁion (3.1) would becomevcorrelated%6 This
increases the computational effort considerably and has only been

attempted for small chains (N = 10). Those results will not be

reported here.

4., Static Properties of a Single Polymer

In this section we present various static properties of an



10

isolated polymer chain emphasizing the various ways in which the
Scaiing behavior of lengths manifests itself. We assume implicitly
that there exists a well defined limiting behavior for very large
polymers and that chains of finite length approximate this behavior

when N is sufficiently large 1.2,

4,1 Size scaling

The customary way of demonstrating the‘scaliﬁg behavior of
polymers is to plot the mean squared end to end distance versus
the number of unitsvin'the polymer chain. Such a plot is shown
in figure 1 for polymers with ﬁ = 5 to N = 63, We have fitted

these numbers with a simple power law and find:

2 - 1.21+0.03

5 -
<Riy” = <lxymr)“> = (0.9240.02)a” (N-1)

{

(4.1)

where a2 = 2,1 is mean square link length in our units.

The radius of gyration is also plotted in figure 1 and obeys
a similar relationship:
N

=17 <r-m?% &~ (0.11:0.05)a” (1-1)
1=1 v

1
1.12+0.02 (4.2)

where 7 is the center of mass of the chain. A more detailed
analysis of computer results on a model chain with fixed links
of length a, and excluded volume interaction of the same form as
ours, was made by Webman et élalob By taking explicitly into

account the finite N corrections to the asymptotic power law

they obtained:

<R2> @ a’ (-1 121 0,541 8y"0-2)
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2 % 2 %

Shown in Figure 2a are the mean values of <Rij> = <§§i5§j) >
against {(i + j§)/N, the chemical ceﬁter of the pair. The lines connect
points of constant i-j; they are lines of constant chemical distance.
The tip of the tree represents the end to end distance squared and
the base the nearest neighbor disﬁancese The approximately constant
value of <R§j> along the lines is a clear indication that the mean
distance between two polymer beads is primarily a function of the
chemical distance and independent of the placemént of the beads
within the chaine The slight bending of the branches halfway up
the tree indicates that there are edge effects of the order of a
few percent, The énd of the polymer chain . is typically surrounded
by fewer polymer beads; thus it feels a smaller excluded volume force,
and it has more freedom to bend than would a bead in the center of
the chain. Also plotted in Figures 2b,c,d are <R§‘1j>l/n for
n=-1,4,6, Note that these grdphs show the same behavior as n = 2,
This indicates that the distribution of the Rij’s is a universal
fuﬁction of Rij/{R;‘;”j>i/2 fgr 1ong chginsa We have checked the behavior
of this tree as N changes and found that in appropriate reduced
units, it has the same shape; we have not studied the effect of
different potentials as a direct observation of universal behavior

10b

{(see however Webman et al and references therein).

4.2 Characteristic Shape

The average shape of a chain is another quantity which should
be independent of the size of the chain. The simplest information

about the shape is contained in the moment of inertia tensor defined

~ <k - -
Tap = SF, L, (7B, (£

r. m)b> a,b =1,2,3 (4.3)
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The eigenvalues of this tensor, Ti’ are measures of the instantaneous
widﬁh of the polymer. in the three orthogonal principle axes, ordered

so that Ti < Tg < Tga Note that the sum of the three eigenvalues
equals the radius of gyrationé The average values of Ti/@zgfor i=1, and
2 are given in Table 1. Note that they are independent of the number

of beads and in fact are almost identical with the equivalent ratios
found in computer simulations of the self avoiding random walk on

a latticeel7 These results indicate that the polymer is typically
shaped like a highly elogated ellipsgid'of inertia with ‘the average
prinéiple éxes being in thévratio of 1:1.8:4.0. For the non-self-

avoiding random walk the corresponding ratios are 1:1.64:3.42,

4.3 Correlation :functions -

The two particié correlation function defined as,

gij(r) = <a(g§i~§j1mr)“ (4.4)
contains a wealth of information about the static properties of

th- : . e
poymers. For example, the n™" moment of this probability density is
just <R?j> defined above. As indicated earliexr the approximate

scaling behavior of the moments implies that this function should

scale as

e -3 2
gij(r) = <Rij> g (r/<Rij>) (4.5)
where §(x) is a universal function independent of i,j,and N. We
have computed this scaled function using the configurations from

our simulations. In order to increase the statistical accuracy we

have averaged over all pairs with constant chemical distance, |i-3

°
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Define:

1 N=1m
9,0} = Fom. L. 91, i+m(x] (4.6)
' i=1
Plotted in figure 3 is QnCRi ngr)) versus the scaled squared
distance r2/<R;> for a 63 bead chain. The Gaussian chain appears as
a straight 1line in this plot. There are small but significant
changes with m, but all of the distribution functions show large
non-Gaussian effects for both large and small distances.
The scaling behavior at small r has been calculated by des
Cloizeaux 18 for an infinitely long excluded volume chain using re-
normalization group techniques. He finds that

0. .
gi5(r) = x T, r<< <Ry > (4.7)

1]
The exponent eiﬁ depends on the placement of i and j in the chain.
If the results of the renormalization calculation apply to our
bead chain then the scaling relationship (4.5) may not be correct at

small r. For three limiting possibilities the predicted exponents

are:
0.272 % 0.004 i=0 j =N
Biy =4 0:459 ¢ 0.003 0=i< j<< N (4.8)
0.71° + 0.05 0 i< << N

Figure 4 is a log-log plot of the short distance behavior of
gm(r) for several values of m. We find that each I has an exponent

of about 0.25. This is particularly evident as m - N. Since we are
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averaging over pairs with constant chemical distance, the exponent
will tend to be that given by the minimum of the exponents of the
di fferent pairs which according to eq. (4.8) is that associated with
pairs one of whose members is near the end. There is no evidence
howevexr in our data of the much larger exponents in eq. (4.8).
A more extensive Monte Carlo calculation involving much larger chains
wouid be useful.

The large r behavior of the end to end distribution on the

lattice has been examined using Monte Carlo by Domb19 et al.y Fisher,

McKenzie and Mocre?l 18a

20

and des Cloiseax have presented scaling

arguments for the following form

3 2 %

(/R 03 exp(-x/r %0, rooRy = <RE

(4.9
Our results are not precise enough to check Eqg.(4.9) guantitatively

Iy ) = Ry

but they do exhibit a significant deviation from a gaussian (cf.fig(3)).

They also indicate that whatever scaling law does apply will describe

10c

near as well as distant bead pairs. A recent study of strongly

stretched continuum chains showed asymptotic behavior for large

r/RN‘as in Eq.(4.9) with an exponent of about 2.5.

The structure or scattering function is the Fourier transform

of the total pair correlation function g(r) = N ) qij(r)

N 2 ° 2
sy = <gl eIl (4.10)

096

Shown in Figure 5 is S(k) versus Q = kN for various values of N.

It is seen that there is a universal behavior for 1/k greater than a

bond distance. The S(k) =~ kw5/3

22,23

behavior for Q > 2 is in accord

rm4/3 NO“6

with Edwards prediction of g(r) - for r ~
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5. Dynamic Properties

In this section we present various time dependent properties
of the single polymer chain. We find that these properties have
a scaling behavior in time. That is, the times involved in various
large scale motion of the polymer are independent of the number of
monomers when properly scaled. The scaling factor can be easily
determined since the diffusion of the center of mass qualifies
as a large scale motion. Let tG be the time it takes for the centér
of mass to diffuse an amoﬁnt equal to the radiuscof gyration. Fromn

equations (3.7) and (4.2) this will equal:

= 0205 2041

G 5 (5.1)

To observe universal behavior we must express all times in terms of
tgg
. Time dependant properties are commonly described in terms of
correlation functions. If H(t) = H(R(t)) is some function of the

polymer chain configuration R(t) then define:
<H(t )H(t. +t)>=<H(t )>2_
0 0 0

C(t;n) = 5 5 (5.2)
<H(t0) >@<H(to)>

The averages are over an equilibrium distribution of initial

values R(to)a This is represented in our simulations as an average
over tc of one or several independent runs. The scaling behavior

of the kinetics then requires that 1f H(R) measures a global propertv
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of the polymer then for large N, C(tNagHN) should be independent of
N where o is a universal exponent.

In our earlier noteB we presen&ed results for the autocorrelation
functions of the end to end vector, the eigenvalues of the mass
tensor, the radius of gyration and the intermediate scattering
function. Here we wish to compare those results with some recent

12

work by Kranbwehland Verdier™® on a dynamical lattice model, and

then to present new results on the viscosity of the polymer

chain and the relative motions of besds in the chain.

5.1 Kinetic Scaling in Continuocus and Lattice Models

As noted in ref. 3, we assumed the validity of scaling and
then calculated, with a nonlinear least squares procedure, the best
vélue for the scaling exponent o (see Appendix 2A). Using the ten
autocorrelation functions examined and chain lengths ranging from
5 to 63 we then obtained 2.04<a<2.24 with a typical statistical
exrror of 0.04. We believe that the difference between the values
0of o as given by the least squares fit are due primarily to the
small chain lengths in our simulations and that o is indeed
universal and close to 2v + 1.

This result, while in satisfying agreement with various theoretical
computations disagreed strongly with the results given in ref.5 on
the time evolution of a lattice model of a polymer chain with
excluded volume in which the relaxation time appeared to increase
much faster with N. - (Note that in the absence of any excluded
volume both lattice and continuum models show behavior in which

time scales as Nz)a
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Following our work,Kranbuehl and Ver&ierl%arried out new
simulations of a dynamical lattice model. Unlike earlier work in
which the configuration of the lattice polymer could change by
either one or two bead moves alone, the new simulations permitted
at any step either one or two bead moves with the relative fraction
of two bead moves equal to p. Although this mixture of moves does
indeed allow the excluded volume chain to relax much gquicker than
with just one type of move, their data for the largest values of
N(63 beads} still appear to show a slowing dowﬁ of the relaxation
times by a factor of N, which is similar to that found with the
more restricted lattice dynamics.

Given this situation, it seems worthwhile to find ways of making
direct comparisons between the lattice model and our model. This
reguires in particular that we have a consistent time scale in
both models. To do this we note that in continuous space, without
hydrodynamical interactions, the diffusion constant is independent
of the internal potential energy, while in the lattice model it may
depend both on the potential and on the dynamical rules (e.g. upon
the vélue of p). We therefore propose that the unit of time in the
two models be defined as the number of computer cycles needed for
the mean squared displacement of the center of mass to egual a fixed
multiple, say 6, of the mean squared end to end distance. There
are sufficient data given in ref.12 to determine t the half time

2,N7

of the correlation function for the end to end vector defined as

Clty. 3Ry = 1/2. (5.3)
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- Assuming that only one exponential has survived in the
correlation function we find that for the lattice model in the units

of time defined above this half time is:

2
L _ Riy Qn(ZaPEN) (5.4)
T2,N I%)N o , ;
12
where ap NiTpp and Dp N @re defined in ref.1l2. TFor our model
7 4 .

this half time will beygiven by

2,N N RZ ’
1IN

These quantities are plotted in Figure 6 for the two models.
The most important feature to noée igs that these two quite different
models give roughly the same ratio (about 30 to 50) of rotational
relaxation to diffusional motion. Secondly, for our model and for
the lattice model with 3 different values of p this ratio of times
for large N appears to be constant although we cannot be too certain
of this, given the rather large error bars on the present calculation.
Viewed from this perspective, the lattice model computations are not
as inconsistent with the generally accepted scaling behavior of time
dependent polymer properties as they seem . It would be useful to
check further this question of scaling. This can be done in our
model by simply increasgsing the length of the simulation. For the
lattice model a variety of correlation functions should be examined

to see if the situation of figure 6 obtains for all such functions.
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5.2 Viscosity of Polymer Chains

We computed the autocorrelation function of the stress
tensor nya ITts Fourier transform gives the increase in the linear
response to a shear wave of the chain plus solvent over the response

of the pure solvent, i.e., the intrinsic viscesitygg

~ 2 0o -
In(w)] =<J_“>/N f d iwt .
Xy / O t e C(tyijxy)

(5.6)

Shown in Figure 7 are log~log plots of C for various values of NQ

In the Rouse model one can show that 13,24
lim C(t;3, ) = e °F I (8t)
N0 *y
I N S (5.7)
Jilént

where IO ig a modified Bessel function. Our data for the excluded

volume chains appears to show the same twl/z dependence for times

less than the slowest relaxation modes of a finite chain and an

exponential decay for larger times.

There exists a sum rule relating the static or zero-freguency

viscosity to the radius of gyration,8 namely

113_(0}3 = <JX§>/N fodt c(t;a’xy) = G2/6 (5.8)
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Thé relevant numbers are given in Table II. It is seen that there
is agreement to within 40%. It should be noted that the calculation
of the integral in (5.8) is difficult from computer simulations
since only a single number is obtained from each configuration and

that number fluctuates greatly as the system evolves.

5.2 Relative Motions of Beads

Pinally, we have calculated the autocorrelation functions
describing how a single bead moves with respect to the center of
mass and how pairs of beads move, isea.C(t;gimg) and C(tg§i“§j)°
Shown in figure 8 and 9 are autocorrelations of these functions
for a chain of length 20. Consider the first of these, namely
C(t;§iﬁ§)g It should decay in a time characteristic of the time
it takes the ith particle to diffuse around the center of mass.
Particles near the center of the‘chain are of course located nearer
to the center of mass as shown by the function <(§iu§)2> plotted
in figure 8. The half time and integral of C(t;;iwg) do show a
deep miﬁimum at the middle of the chain. However near the ends
of the chain the situation is quite different. The ends appear
to be much more mobile than beads located in the interior of the
chain. One can detect a region of the chainyvccmprising about 15%
of each end of the polymer, where the diffusion time about the
center of mass decreases as the distances to the center of mass
increases. The ratio of the half time to the integral of the
correlation function expresses how nearly éxponential is the decay
of the correlation function. Near the ends this ratio equals

(within statistical errors) the exponential value [1n{2)] but it
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is lower near the middle of the chain., We interpret this ﬁo
mean that the motion at the end of the chain has a single slow
characteristic time scale. WNear the center, in addition to this
slow mode which will always dominate at long times, the motion
is complicated by other, faster modes associated with motions about
ﬁhe center of mass., In Figure 9 is shown C(t;{imgj) for N = 20,
The lines connect points of constant i - j, Thus this figure is
the dynamical analogue of figure 2. Although edge effects are
not very important for static correlation functions, dynamically
they are much more important, correlation times decreasing by a
factor of two if the pair of particles happen to be located near

the ends.,
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Appendix A Calculation of the Scaling Exponent

. In this appendix we give in detail the procedure we have used
for calculating the scaling exponent, o, which brings‘several
time dependent correlation functions into agreement. With the
ﬁrajectory generated by the simulation we calculate the correlation
function C(t;H )} of some property H for several values of N, using
equation(5.2.) ,The averages are taken over the entire length of the
trajectory. This correlation function will depend upon the initial
conditions and will.flgctuate from run to run because of the finite
time available for computing the average. Z2Zwanzig and Ailawadi25 have
proposedﬂthat the vari nce of the estimate of the correlation function
has the following form:

4t

V(N = <(Cm<cr] P> = AL (1-<eo)? (A.1)

L]

o0 »
where 7 = f dt C(t;H 2
0

N) and T is the length of the trajectory.

Our data verify their prediction within a factor of two.
Let us assume that the scaling hypothesis is valid, namely that

there exists an o such that C(SN@;HN) is independent of N as a

function of scaled time s. Then the linear combination

Jw(t,N)C(sN%;H

)
& N

E(s,0) = (A.2)

) w(t,N)
N

will equal the scaled correlation function. To minimize the variance
of the estimate of C(s,0), the weights w(t,N) must be chosen so
that each term in the linear combination contributes an equal variance.

This implies:
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wt,N] = 1/v(t,N) (A.3)

The success of the scaling hypothesis can then be judged by the
squared difference between the scaled averaged function and the

original data:

s
0
.BE‘ ~
xzia) = 8, I ds Z(CCSN@;HN}mC(SFQ))2/V(SN&,N) (A.4)
0 N
The best scaling exponent is that which minimizes xz(u)s In the

integral in equation (A.4) we have choéen so to be such that for
‘at least two values of N, C(SN@;HN)2>V(5N@,N)5 i.e. the signal is
greater than the noise.

The advantages of the above procedure are that it make no
assumptions about the form of 6(s)y that all of the available data
is used with the proper statistical weight, and that the procedure

. . . s . 2 .
is stable (i.e., a minimum in ¥ (o) is ensured).
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total simulation time (in units of UZ/D)aR

G 1s the vradius of gyration,

and T

iN

2

eigenvalues of the moment of inertia tensor.

N T <R§N> <G2> <T§>/<GZ> <T§>/<G2>
5 5%10 10.35%0,05 1.929+0.012 0.037 0.166
10 5%10 27.8 0,03 4,65 +0.,04 0.051 0.159
20 7.5%10 70%4 11.0+0.5 0.053 0.157
33 10% 12546 19.940.6 0.054 0.162
48 11x10 197+14 31%1.5 0.057 0.176
63 8x10 321%40 48,6%5 0.050 0.157
Static properties of our model. N is the number of beads. T is the

is the end-to-end distance,

§ and T2 are the smallest and second
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Table IT
N Z%(O)l c?/6 <(vu) 2> <v?us <ny2> T,
5 0.36 0.322 43,4 44,8 30 6
10 1.4 0.77 54,1 53.0 71 12
20 2.5 1.83 57.8 56.0 152 32
33 3.0 3.2 56,7 57.1 246 60
48 7.8 5.2 58.5 57.6 371 151

The excess viscosity [N(0)] as a function N, the number of beads per
chain. The relationship (equation 5.8) asserts that [3(0)] should

equal G2/6e The agreement with our data is good only to about

40%, probably becéuse of the large fluctgations in jx and because

of the difficulty in performing theAtime integral. To check our program
we have calculated <(VU)2> and <V2U> which must be equal if averaged
over the Boltzman distribution. Also shown is <3Xy2> and T, the upper

limit uwsed in the time integral in eq. 5.8,
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Pigure 2:

Figure 3:
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Figure Captions

The mean sguared end-to-end distance (dashed line)
and the mean radius of gyration (solid line) versus

the number of particles.

The average values of four moments of Rij versus the
relative distance, x, from the center of the chain
for a chain with 20 beads where x = (i+j-21)/19.

The lines connect points of constant chemical distance

(i -~ jJ = constant). The vertical axis is in units
M 1/M '
of <Rl 20> .Hence. the bottom of the tree represents
§

moments of adjacent beads.

The logarithm of the pair distribution function for
beads i and j on a chain with 63 beads, as a function

2 . <R§j>» The distributions are

;1::*2/:1.':’%‘2 where r*
averaged over all i and j that satisfy i - § =m
where m = 5 for  ; m = 10 for ----- ¢ and m = 40
for (—— ¢ w——} the straight line{(—— — ——) is the

corregponding curve for the ideal chain (no excluded

volume interaction).
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Figure 4:

Figure 5:

Figure 6:
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The probability distribution log g..(r) versus

ij
log (r/r*)z for small r. The distribution are
averaged over all i and j such that i = j =nmn

for a chain consisting of 48 beads. Three values
of m are shown (5, 20 and 40) which are represented
by (0,4 ,4 ) respectively. The line is the curve
glr) = a rl/ég

V' and v = 0.6, The

Sy (k) versus g where g = kKN
symbols represent the results of six different
values of N (see right-hand scale)e The line is
OESQQS/BB For large k, S(k)+1/N. It is seen that

for k<2 the curves coincide.

The ratio of the half time of the correlation
function of the end-to-end vector to the mean

time for the center of mass to diffuse a distance
equal to the radius of gyration as a function of

the number of beads. The present calculation is shown
as (I) and the dynamical lattice simulation (ref.12)
with 3 values of p, (1.0, 0.5, 0.0) represented

by (4,0, ) respectively. p is the fraction of

two ! rad moves in the lattice model
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